The Calculus of Structures

Alessio Guglielmi
TU Dresden

joint work with Kei Brünnler
Paule Bruscoli
Lutz Straßburger
Atwen Tiu

special thanks to Pietro Di Clemente
Charles Stewart

and to Steffen Hölldobler

June 2002
1. What Is the calculus of structures?

2. Classical Logic
 atomicity, locality

3. Linear Logic
 modularity

4. System SBV
 calculism (and process algebras)
1. What is the calculus of structures?

It's a step back from the sequent calculus.

New properties:
- atomicity
- locality
- modularity

Do we get a better proof theory?
1. **What is the calculus of structures?**

The sequent calculus is very committed to trees.

Example 1
"Additive" conjunction

\[
\begin{array}{c}
\Gamma, A, B, \Delta \\
\hline
\Gamma, A, B, \Delta \\
\end{array}
\]

The formula tree shapes the proof tree.

Example 2
"Multiplicative" conjunction

\[
\begin{array}{c}
\Gamma, A, B, \Delta \\
\hline
\Gamma, A, B, \Delta \\
\end{array}
\]

The formula tree induces an unwanted tree (in proof-search).
Example 3 Cut elimination

The formula tree decides the order of reductions
1. What is the calculus of structures?

Trees are unfriendly to distributed computation.

- **Example** Suppose that
 - atoms are processors: a, b, c, d
 - communication flows through the tree structure

```
        1
       /\  /
      2 3
     /\  /
    a b c d
```

The communication workload of 1 is four times that of 2 and 3.

- Main connectives create an asymmetry.
- Step back: in the calculus of structures, there are no main connectives.
1. What is the calculus of structures?

There are no main connectives

- Example 1 "Additive" conjunction

\[\vdash (A \lor C) \land (A \lor C) \]
\[\vdash (A \land B) \lor C \]

- Example 2 "Multiplicative" conjunction

\[\vdash (A \otimes C) \oplus B \]
\[\vdash (A \oplus B) \otimes C \]

- Inference rules can be applied deep inside formulae

- There is a new top-down symmetry

- What happens to the subformulae property?
Example 1 "Additive" conjunction

Rule

\[p \frac{S \{ (AvC) \land (BvC) \} }{S \{ (AvB) \lor C \} } \]

can be applied as in

\[p \frac{(AvC) \land (BvC) \land D \lor E}{(AvB) \lor C \land D \lor E} \]

Example 2 "Multiplicative" conjunction

Rule

\[p \frac{S \{ (AvC) \bullet B \} }{S \{ (AvB) \bullet C \} } \]

can be applied as in

\[p \frac{(AvC) \bullet (B \bullet D)}{(AvB) \bullet C \bullet D} \]
Inference rules can be applied deep inside formulae.

- Inference rule p:

 - The hole in $S \& 3$ does not appear inside a negation.

 - Rule p corresponds to $T \rightarrow R$.
1. What is the calculus of structures?

Structures

- Atoms are positive or negative: \(a, b, c, \ldots, e, f, g, \ldots \)

- Structures \(P, Q, R, S, T, U, \ldots \) are

\[
S ::= \\
\text{atoms} \quad a \\
\text{disjunctions} \quad \mathbin{\|} (S, \ldots, S) \\
\text{conjunctions} \quad \mathbin{\&} (S, \ldots, S) \\
\text{other relations} \quad \llbracket S, \ldots, S \rrbracket \mid \ldots \\
\text{units} \quad \top, \bot, 1, 0, \ldots \\
\text{modalised structures} \quad \Diamond S, \Box S, \ldots \\
\text{quantified structures} \quad \exists x. S, \forall x. S, \ldots \\
\text{negated structures} \quad \neg S
\]
Structures

- Equations are imposed over structures:

 Commutativity (not always)
 \[[R, T] = [T, R] \]

 Associativity (always)
 \[\langle R; \langle T; U \rangle \rangle = \langle R; T; U \rangle \]

 de Morgan (always!)
 \[\overline{[R, T]} = (\overline{R}, \overline{T}) \]

 contentued closure
 \[R = T \Rightarrow S\{R\} = S\{T\} \]

- Notation: Braces are dropped when unnecessary.
 Example:
 \[S[R, T] \text{ instead of } S\{R, T\} \]
If

\[\frac{S \not R 3}{S \not R 3} \]

is a rule, corresponding to

\[T \to R \]

then

\[\frac{S \not R 3}{S \not R 3} \]

is also a rule, corresponding to

\[R \to \overline{T} \]
What is the calculus of structures?

There is a new top-down symmetry

Example

In linear logic

\[
\begin{align*}
P \Downarrow & \quad S \downarrow !([R,T]) \\
P \Uparrow & \quad S [!R, ?T]
\end{align*}
\]

corresponds to

\[
!(R \& T) \rightarrow (?!R ?T)
\]

corresponds to

\[
P \Uparrow \quad S (?R, !T) \\
S \uparrow (?R, T)^3
\]

corresponds to

\[
(R \& ?T) \rightarrow !R \& T
\]
What is the calculus of structures? 3.16

There is a new top-down symmetry 3 of 3

- Derivations (Δ) are chains of instances of inference rules

 \[\vdash \]
 \[\frac{\pi}{T} \]
 \[\frac{\beta}{R} \]
 \[\vdash \]

- There is a top-down symmetry. Example

 \[\vdash \]
 \[\frac{R}{T} \]
 \[\frac{\beta}{T} \]
 \[\frac{\pi}{U} \]
 \[\vdash \]

is a valid derivation
What is the calculus of structures?

What happens to the subformula property?

- Morally, it still holds if we design rules carefully. Example:
 \[
 \frac{S([R,U], T)}{S([R,T], U)}
 \]

 premise and conclusion are made of the same pieces

- Rules can still be finitary, either upwards, or downwards, or both

- Being finitary does not depend on having main connectives
Do we get a better proof theory?

- We have some chances because:
 - we abolished the main connective idea
 - we are free to apply rules deeply
 - then we have more freedom
 - we also have a new symmetry!
 - we should see proofs in more detail

- But:
 - we have to be careful in designing systems!
 (we shouldn’t abuse freedom)
 - it’s still not clear whether we can do some good distributed computation
Recipe for a good system

- Choose disjunction and conjunction and make identity and cut.

Example: linear logic

- $[R, T]$ stands for $R \& T$
- (R, T) stands for $R \otimes T$

- Establish

\[
\frac{S[R, R]}{S[R, R]} \quad \frac{S(R, R)}{S[R, R]}
\]

- This is your interaction fragment
Take each couple of dual logical relations, for example:

- \(\{R, T\} \) stands for \(R \circ T \)
- \((R, T) \) stands for \(R \land T \)

and create the rules

\[
\begin{align*}
\frac{S([R,U],[T,V])}{S([R,T],[U,V])} & \quad \frac{S([R,T],[U,V])}{S((R,U),(T,V))} \\
\frac{\exists n.R [\forall n.T]}{S[\forall n.R, \exists n.T]} & \quad \frac{S(\exists n.R, \forall n.T)}{S[\exists n.(R,T)]}
\end{align*}
\]

This is your core structure fragment

Add the non-core structure fragment
A one-sided system into the calculus of structures

One-sided (Gentzen-Schütte) system $GS\vdash p$

A system for classical logic in the calculus of structures (the "nait" system)

\[
\begin{align*}
\text{id} & \quad \frac{\text{id}}{A, \bar{A}} \\
\text{VL} & \quad \frac{\text{VL}}{B, A, \bar{A}} \\
\wedge & \quad \frac{\wedge}{B, A, \bar{A}} \\
\text{V} & \quad \frac{\text{V}}{B, A, \bar{A}} \\
\text{c} & \quad \frac{\text{c}}{B, A, \bar{A}} \\
\text{wt} & \quad \frac{\text{wt}}{B, A, \bar{A}} \\
\end{align*}
\]
2. Classical logic

A one-sided system into the calculus of structures

Equations

\[[R] = (R) = R \]
\[[R, \overline{R}] = [\overline{R}, R] \]
\[(R, \overline{R}) = (\overline{R}, R) \]
\[\overline{R} = R \]
\[[R, [\overline{R}, \overline{R}], \overline{R}] = [R, \overline{R}, \overline{R}] \]
\[(R, (\overline{R}, \overline{R})) = (R, \overline{R}, \overline{R}) \]

\[[R, \overline{T}] = (\overline{R}, T) \]
\[(R, T) = [\overline{R}, T] \]

Example: Prove \(((A \lor B) \lor A) \lor A \equiv ((\overline{A} \lor B) \lor A) \lor A \equiv ((\overline{A} \lor B) \land \overline{A}) \lor A \)

\[
\begin{align*}
\frac{id}{\vdash A, A} \\
\frac{id}{\vdash \overline{A} \lor B, A} \\
\frac{id}{\vdash (\overline{A} \lor B) \land \overline{A}, A} \\
\frac{id}{\vdash ((\overline{A} \lor B) \land \overline{A}) \lor A} \\
\frac{id}{\vdash ((\overline{A} \lor B) \land \overline{A}) \lor A}
\end{align*}
\]
The calculus of structures generalizes the one-sided sequent calculus.

* It is trivial and un-interesting to partake in the one-sided sequent calculus to the calculus of structures.

* The translation works like this:

```
\( \frac{E, \ldots, E_n, E', E''}{E'} \quad \frac{E', E''}{E, \ldots, E_n, E', E''} \)
```

* Symmetry is not exploited!

* Dequeuising is not exploited!

* Can we do better then the sequent calculus?
2 Classical logic

A deep, symmetric system

- Let's apply our recipe!
- We keep the equations we have already

- Interaction

 \[
 \text{lL } \frac{\text{S} \text{tr} \text{3}}{\text{S}[R, R]} \quad \text{rR } \frac{\text{S}[R, R]}{\text{S} \text{tr} \text{3}}
 \]

- Core structure

 \[
 \text{sL } \frac{\text{S}[R, U], [T, V]}{\text{S} [(R, T), U, V]} \quad \text{sR } \frac{\text{S}[R, T], U, V)}{\text{S} [(R, U), (T, V)]}
 \]

- Non-core structure (here we have to be creative)

 \[
 \text{wL } \frac{\text{S} \text{tr} \text{3}}{\text{S} \text{er} \text{3}} \quad \text{wR } \frac{\text{S} \text{er} \text{3}}{\text{S} \text{tr} \text{3}}
 \]

 \[
 \text{cL } \frac{\text{S}[R, R]}{\text{S} \text{er} \text{3}} \quad \text{cR } \frac{\text{S} \text{er} \text{3}}{\text{S}[R, R]}
 \]
A deep, symmetric system

- **Definition** A system (\mathcal{S}) is a set of inference rules.

- **Definition** A rule ϕ is strongly admissible for a system \mathcal{S} if $\phi \notin \mathcal{S}$ and for every instance $\frac{T}{\mathcal{R}}$, there is a derivation $T \vdash_{\mathcal{R}}$.

- **Definition** This rule is called switch : $\frac{S(\langle r, u \rangle, T)}{S(\langle r, t \rangle, U)}$.

- **Proposition** s_b and s_t are strongly admissible for s.

- **Proof**

 $s \frac{s(\langle r, u \rangle, \langle T, v \rangle)}{s(\langle r, t \rangle, \langle T, v \rangle)}$
 $s \frac{s(\langle r, u \rangle, T, v)}{s(\langle r, t \rangle, U, v)}$
 $s \frac{s(\langle r, t \rangle, U, v)}{s(\langle r, u \rangle, \langle T, v \rangle)}$

- **Remark** Switch is self-dual.

- **Remark** s is a special case both of s_b and s_t.

2. Classical logic
2. Classical logic

A deep, symmetric system

- We have a system, let’s call it CLC

![Diagram of logical system]

- Is this classical logic? Yes: let’s see

- Remark: $\exists!\#, \#^+, s^3$ (and $\#^6, s^3$) is multiplicative linear logic
A deep, symmetric system

- **Theorem**: Every derivation in GS1 p can be transformed into a derivation in CLC, and if it is cut-free, it remains cut-free.

 Proof: CLC is more general than the unit system we saw already. (Just pay attention to contraction in the rule A and notice that)

 $\frac{s, [\gamma, \Delta], [\Delta, \tilde{\Delta}]}{s, [\Delta, ([\gamma, \Delta], \tilde{\Delta})]}$

 $\frac{s, [\Delta, ([\gamma, \Delta], \tilde{\Delta})]}{s, [\gamma, \Delta, (\Delta, \tilde{\Delta})]}$

 $\frac{s, [\gamma, \Delta, (\Delta, \tilde{\Delta})]}{s, [\gamma, \Delta]}$

- Then, CLC is classical logic, because every rule is sound.

- Is there any use for cut and CS?
2. Classical logic

A deep, symmetric system

- What about cut elimination?

- Idea: let's exploit the sequent calculus

- Theorem

Every derivation in CLC can be transformed into a derivation in GSTP

Proof

\[
\frac{\Delta \vdash \text{ind. hyp.}}{\Delta} \quad \frac{\Delta \vdash \text{cut}}{\Delta} \quad \frac{\Delta}{} \quad \Delta \vdash \text{cut} \quad \Delta \vdash \text{cut}
\]

This is easily done for each \(p \)
2. Classical Logic

A deep, symmetric system

- Let's break the symmetry!

- **Definition** A proof is a derivation whose topmost structure is (equivalent to) ε

- **Definition** An inference rule ϕ is (weakly) admissible for a system \mathcal{S} if $\phi \in \mathcal{S}$ and for every proof $\frac{\Gamma}{\phi}$, there exists a proof $\frac{\Gamma'}{\phi}$

- **Theorem** ε is admissible for $\{\text{ib, s, wb, cb3}\}$

 (and there is an algorithmic transformation for it)

Proof

\[
\begin{align*}
\Delta & \rightarrow \varepsilon(\Delta) \quad \text{(lots of cuts)} \\
& \downarrow \text{cut elimination} \\
(\text{no cuts}) & \varepsilon'(\Delta') \leftrightarrow \Delta'
\end{align*}
\]
2. Classical logic

A deep, symmetric system

- Do we have a better system than classical logic in the sequent calculus?
 Perhaps, but still ...

- Do we have a better, or interesting, cut elimination procedure?
 Well ...

- Symmetry still is not fully exploited!

- Deepness still is not fully exploited!
Atomicity

- Consider

\[
\text{if } \quad S[e,t] \quad \text{then}\quad S[\{e,t\},\bar{e},\bar{t}]
\]

The it's became "smaller", so they eventually can be replaced by

\[
\text{aid } \quad S[e,t] \quad \text{then}\quad S[\{e,t\},\bar{e},\bar{t}]
\]

This rule is called atomic interaction

- Theorem it is strongly admissible for \{a,b\}

- Nothing unexpected!
Atomicity

- Consider

\[
\begin{align*}
& \quad \frac{S([\bar{R}, \bar{T}], \bar{E}, \bar{P})}{s} \\
& \quad \frac{S([R, \bar{E}], \bar{T}, \bar{P})}{s} \\
& \quad \frac{S([E, \bar{E}], T, \bar{P})}{1} \\
& \quad \frac{S(\bar{R}, \bar{T})}{S[\bar{E}]} \\
& \quad \frac{S(T, \bar{P})}{S[1]}
\end{align*}
\]

The it's, too, become "smaller"; we can replace them by

\[
\begin{align*}
& \quad \frac{S(e, \bar{E})}{S[\bar{E}]} \\
& \quad \frac{S(e, \bar{E})}{S[1]}
\end{align*}
\]

This rule is called atomic cointersection.

- Theorem it is strongly admissible for \(\{2\bar{E}, s\} \)

- This property, due to symmetry, we can exploit!
Atomicity of conteraction (cut)

- Consequences:
 - A simpler cut elimination proof
 - Decomposition theorems

- Curiosities:
 - A different relation between cut, subformula property, and finitarity
 - A simple consistency proof
Classical logic

Finitaryness

- In the sequent calculus, finitaryness (going up) corresponds to the subformula property.

Example

\[\frac{T \Gamma, A \quad T \Gamma, B}{T \Gamma, A \land B} \quad \text{cut} \quad \frac{T \Gamma, A \quad \text{false \ } \bar{A}}{T \Gamma, A} \]

- Finitary
- A and B are subformulas of \(A \land B\)

- non-finitary
- \(A\) is not necessarily a subformula of the conclusion

- In the calculus of structures, there is no subformula property, but still, all inference rules for classical logic are finitary (going up), except for:

\[
\begin{align*}
\text{up: } & \frac{S\{\epsilon, R\} \quad \epsilon \in \mathbb{S}}{S\{\epsilon\}} \\
\text{and: } & \frac{S\{R, \bar{R}\} \quad R \in \mathbb{S}}{S\{R\}}
\end{align*}
\]

(or \(\text{up: } \frac{S\{R, \bar{R}\} \quad R \in \mathbb{S}}{S\{R\}}\))
• Rules in the core are always finitary!
 (They just "reshuffle" logical relations)

• Conules in the non-core up fragment are always strongly admissible for their duals, plus switch and intersections:

\[
\begin{align*}
& \frac{S[T]}{S[T]} \\
& \frac{S(T, [R, \overline{R}])}{S[T]} \\
& \frac{S(T, [R, \overline{T}])}{S[T]} \\
& \frac{S[R, (T, T)]}{S[T]}
\end{align*}
\]

• Then the only infinitary rule we are left with is

\[
\begin{align*}
& \frac{S[e, e]}{S[e, e]}
\end{align*}
\]
Finitaryness

- Consider the finitary atomic co-interaction rule:
 \[
 \frac{s(e,\bar{e})}{s} \\
 \text{where } e \text{ or } \bar{e} \text{ appears in } s \leq 3
 \]

- It is easy to eliminate all sit instances that are not taut instances, in proofs.

 \[
 \frac{t}{s} \\
 \frac{s(e,\bar{e})}{s} \\
 \frac{R}{F}
 \]

 replace here all e's with t and all \bar{e}'s with f: the proof remains valid!

 proceed inductively upwards in the proof.

- Theorem: Replacing sit by taut does not affect provability.

- Finitaryness does not morally depend on full-blown cut elimination!
A simple consistency proof

1. Theorem Propositional classical logic is consistent
 Proof We cannot get $\top \models f$ when using falsity.

2. Theorem If R is provable then \overline{R} is not provable
 Proof Suppose we have

 \[
 \pi, \top \models R \quad \text{and} \quad \pi, \top \models \overline{R}
 \]
 Then we make $\pi, \top \models t$ and then we flip it:

 \[
 [R, \overline{R}] \models f
 \]
 Then we can make

 \[
 \vdash t \quad [R, \overline{R}] \models f
 \]
 absurd.
Exploiting deepness

- The following rule is called **mediational**:

\[
\frac{S([R, V], [T, V])}{S([R, T], [V, V])}
\]

- **Medial** is self-dual

- Look at

\[
\begin{align*}
\text{ct} & \quad \frac{S([P, P, Q, Q])}{S([P, P, Q])} \\
\text{ct} & \quad \frac{S([P, P, Q])}{S([P, Q])}
\end{align*}
\]

and

\[
\begin{align*}
\text{ct} & \quad \frac{S([P, Q]), [P, Q])}{S([P, P], [Q, Q])} \\
\text{ct} & \quad \frac{S([P, P], Q)}{S([P, Q])}
\end{align*}
\]

By **mediational**, contractions get "smoother".

- The following rules are called **atomic contraction** and **atomic cocontraction**:

\[
\begin{align*}
\text{ct} & \quad \frac{S[e, e]}{S[e, e]} \\
\text{ct} & \quad \frac{S[e, e]}{S[e, e]}
\end{align*}
\]

- **Theorem**: ct is strongly admissible for βct, μ3, and θct.
Exploiting deepness

- Deepness is essential for getting atomic contraction

- In the sequent calculus, it is impossible to get atomic contraction

- By the way, weakening is easily reduced to atomic form:

\[
\begin{align*}
\text{cut} & \quad \frac{S(p, q)}{S(p, q)} \\
\text{cut} & \quad \frac{S(p, f)}{S(p, f)} \\
\text{cut} & \quad \frac{S(p, q)}{S(p, q)} \\
\text{cut} & \quad \frac{S(p, q)}{S(p, q)}
\end{align*}
\]

... and obviously for consequent
System SKS

This is classical logic
Locality

- Let's call locality the property of a rule requiring bounded effort to be applied.

Example: switch

![Diagram]

- Locality depends on the representation

- Atomicity can be a special form of locality

- There still is much to do for distributed computation (but look at relational fields)

- Applications in complexity?
Why cut elimination is different than in the sequent calculus?

Because in the sequent calculus the main connective "drives" the reduction:

\[
\frac{\Gamma, A \quad \Gamma, B}{\Gamma, \Lambda B} \quad \frac{\Gamma, \Lambda}{\Gamma, \Lambda \Lambda B} \quad \frac{\Gamma, \Delta, \Lambda}{\Gamma, \Delta, \Lambda \Lambda B}
\]

\[
\frac{\Gamma, \Lambda}{\Gamma, \Lambda}
\]
Cut elimination

- In the calculus of structures:

\[
\frac{T}{S}
\]

\[
\frac{S \left(d, (e, b, c, [\bar{c}, \bar{b}, \bar{e}]) \right)}{\left[d, (e, b, c, [\bar{c}, \bar{b}, \bar{e}]) \right]}
\]

\[
\text{if } \frac{S(R, T, [\bar{R}, \bar{T}])}{\text{S} \{ f \}}
\]

\[
R = (e, b)
\]

\[
T = c
\]

\[
S = [d, b, 3]
\]

What are we supposed to do??

- Freedom has a price

- Atomicity helps a lot!
Theorem \(a \uparrow \) is admissible

Proof

1. Transform cuts into shallow cuts:

\[
\mathrm{cut}_s \quad \frac{[s, (e, \bar{e})]}{s}
\]

2. Permute up super cuts:

\[
\mathrm{cut}_s \quad \frac{(s', s_1)}{[(s'_1, \text{n.a}), (s'_2, \text{n.a})]}
\]

where \(\text{n.a} = \underbrace{(e, \ldots, e)}_{\text{n times}} \)

end \(S' \) is obtained from \(S_1 \) by replacing some \(e \)'s by \(f \);

and \(S'_2 \) is obtained from \(S_2 \) by replacing some \(\bar{e} \)'s by \(f \).
2 Classical Logic

Decompositions

Theorems

- For every $T \models \text{sks}$, there is R

- For every $T \models \text{sks}$, there is R

- One cannot do these things in the sequent calculus

- We start seeing some modularity
Is there any use for weakening and contraction?

Yes:

- We saw def already for getting and (but that use was trivial)
- In interpolation theorems!

It is always possible to generate derivations such that, if $\vdash T \Rightarrow R$, then

\[
\begin{array}{c}
T \\
\quad \vdash \text{growing}
\end{array}
\quad
\begin{array}{c}
U \leftarrow \text{interpolant} \\
\quad \vdash T \Rightarrow U \Rightarrow R
\end{array}
\quad
\begin{array}{c}
\quad \vdash \text{growing}
\end{array}
\quad
\begin{array}{c}
R
\end{array}
\]
Multiplicative exponential linear logic

System SELS

\[
\begin{align*}
\text{down} & \quad \text{up} \\
\frac{S[e,e]}{S[e,e]} & \quad \frac{S(e,e)}{S[e,e]} \\
S[C(R,T),T] & \quad S[C(R,T),U] \\
p & \quad p_1 \\
\frac{S![R,T]}{S![R,T]} & \quad \frac{S!(R,T)}{S!(R,T)} \\
\omega & \quad \omega_1 \\
\frac{S[L]}{S[R]} & \quad \frac{S[R]}{S[R]} \\
l & \quad l_1 \\
\frac{S[R,R]}{S[R,R]} & \quad \frac{S[R,R]}{S[R,R]} \\
+ \text{ decidable equations, especially } \left\{ \begin{array}{l}
??R = ??R \\
!!!R = !!R
\end{array} \right.
\end{align*}
\]
Multiplicative exponentiated linear logic

- Interactions are atomic
- Promotion is local!
- Absorption (i.e., contraction) is not atomic

Modularity starts to manifest itself: each of \(\text{ai}, \, \text{pi}, \, \text{ui} \) and \(\text{bi} \) is admissible for the down fragment and can be shown admissible independently (to a certain extent)

So, there are \(2^4 = 16 \) equivalent systems whose properties are known
Theorem

For every $T \vdash_R R$

There is a core of SECS

Proof: Difficult!
• We apply all our techniques and get:

• A system, called SCL5, with 34 rules, 16 of which in the up-down fragment (all admissible, of course): so we have $2^{16} = 65,536$ equivalent systems

• All rules are local (or atomic), including contradictions

• All rules follow our recipe + medial + contraction + weakening, so the system is big but very uniform
Full Linear Logic

<table>
<thead>
<tr>
<th>Structure</th>
<th>Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S([R,U],T)$</td>
<td>$S([R,T],U)$</td>
</tr>
<tr>
<td>$S([R,U],U,V)$</td>
<td>$S([R,T],U,V)$</td>
</tr>
<tr>
<td>$S([R,T],U,V)$</td>
<td>$S([R,T],(U,V))$</td>
</tr>
<tr>
<td>$S([R,T],(U,V))$</td>
<td>$S([R,T])$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S(1)$</td>
</tr>
<tr>
<td>$S([a, a])$</td>
</tr>
<tr>
<td>$S([0], U)$</td>
</tr>
<tr>
<td>$S([R,T], U,V)$</td>
</tr>
<tr>
<td>$S([R,T], (U,V))$</td>
</tr>
<tr>
<td>$S([R,T], (T,V))$</td>
</tr>
</tbody>
</table>

System SLLS
It always holds. How do we prove it?

- MLL: splitting
- NELL: decomposition + splitting
- NALL: splitting
- LL: by translation to the sequent calculus
Idea

- CCS is a language for distributed computation where

\[
a \cdot b | \overline{a \cdot b} \rightarrow 0
\]

- Can we make a logic out of this?

- If so, we want \(\overline{a \cdot b} = a \cdot \overline{b} \)

- Then \(\cdot \) is a non-commutative self-dual logical relation

- Problem: getting this in the sequent calculus is very difficult (let's say impossible, see later)
Recipe!

- Ingredients:
 1. 2 commutative dual logical relations
 2. 1 non-commutative self-dual logical relation
 3. 1 self-dual unit common to all relations

- Recipe:

 Just create an intersection and a core structure fragment (everything is multiplicative, for now)

- We get a very simple system whose proof theory is extremely intricate

- The system is atomic and local
The system

- Rules:

- Equations:

 Commutativity:
 \[
 \begin{align*}
 [\overline{R}, \overline{T}] &= [\overline{T}, \overline{R}] \\
 (R, \overline{T}) &= (\overline{T}, R)
 \end{align*}
 \]

 Associativity:
 \[
 \begin{align*}
 [\overline{\overline{R}}, \overline{T}] &= [\overline{R}, \overline{T}] \\
 (R, (\overline{T})) &= ([R], \overline{T}) \\
 (\overline{R}; (\overline{T}; \overline{v})) &= (\overline{R}; \overline{T}; \overline{v})
 \end{align*}
 \]

 Content clause:
 \[
 \text{if } R = T \text{ then } S[R3 = S3T3]
 \]

 Unit:
 \[
 \begin{align*}
 R &= [R, o] = (R, o) = \langle R; o \rangle = \langle 0; R \rangle \\
 \hat{R} &= R \\
 [\overline{R}, T] &= ([\overline{R}, T]) \\
 (R, T) &= ([R, T]) \\
 \langle R; T \rangle &= \langle R; T \rangle \\
 \hat{o} &= o \\
 \end{align*}
 \]

 Singleton:
 \[
 [R] = (R) = \langle R \rangle = R
 \]
The idea comes from the sequent calculus.
• Definition \(\mathbf{BV} = \frac{1}{2} \mathbf{dib}, s, q \mathbf{b} \)

• Theorem (Splitting)

- If \(\triangledown \mathbf{Ev} \) then \([\mathbf{3}, [s_1, s_2]] \)

 \(\mathbf{Ev} \) and \(\mathbf{Ev} \)

 \(s \mathbf{e} [R, s] \)

 \([T, s_2] \)

- If \(\triangledown \mathbf{Ev} \) then \([\mathbf{3}, s_1, s_2] \)

 \(\mathbf{Ev} \) and \(\mathbf{Ev} \)

 \(s \mathbf{e} [R, s] \)

 \([T, s_2] \)

Proof: Complex, but uniform
System SBV

Cut elimination by splitting

- Theorem α^T is admissible for BV

Proof Splitting

- Theorem γ^T is admissible for BV

Proof Splitting

- SBV and BV (and $BV \cup \{a_r^3\}$ and $BV \cup \{a_3^3\}$) are equivalent
Decomposition

Theorem

If $T(R) \subseteq S$ then

Proof Permutations

\[T \subseteq^3 \]
\[T \]
\[\text{core of } S = \{s, q, q^2, q^3\} \]
\[R \]
\[\{q, q^3\} \]
Intuitive representation of SBV structures

\[\langle a; [b, (c, \langle d, e \rangle)] \rangle \]
System SBV

SBV cannot be expressed in the sequent calculus.

S_1
SBV cannot be expressed in the sequent calculus.
SBV cannot be expressed in the sequent calculus.

• Theorem \(S_1, S_2, \ldots\) are all provable in SBV if and only if one starts reasoning from the looks.

 Proof Use relational fields semantics.

• Theorem There is no system in the (normal) sequent calculus which is equivalent to SBV.

 Proof Given any sequent system, produce a structure \(S_k\) whose lock is deeper than the depth of the sequent system.
The calculus of structures

Do we get a better proof theory?
Can we do better than the sequent calculus?

We observe:

- atomicity
- locality

- modularity:
 - in the rules
 - in decompositions
 - in cut elimination arguments

- we easily define logics that 'challenge' the sequent calculus